
all.md 2024-07-10

1 / 17

ECTSim MATLAB Toolbox is designed to model electrical tomography for both two-dimensional and three-
dimensional applications. The example files, example_2D.m and example_3D.m, illustrate how to prepare a
model within our software. They demonstrate simulating the distribution of electromagnetic fields, conducting
complex impedance measurements, and performing image reconstructions using sensitivity matrices.

Example 2D
This example shows how to solve the forward and inverse problems for a 16-electrode sensor filled with
materials of varying permittivity and conductivity.

Example 3D
This example demonstrates how to solve the forward and inverse problems in a three-dimensional numerical
model. A 3D sensor with 32 electrodes, arranged in two rings of 16 electrodes each, is used.

__________________________________________________________

Numerical model preparation

addElement
Adds an element with a given name to a numerical model ('Sensor' cell array). The element must exist in the
'Elements' cell array to be included in the final model and simulation. This function ensures that no element
sharing grid points with any other element is added.

Usage: [model] = addElement(model, 'el_name', permittivity, varargin);

model - Structure with a numerical model description.
el_name - Name of the element.
permittivity - Relative permittivity value (>=1).
varargin - Optional parameters including conductivity and potential values applied if boundary
conditions are set on this element; excitation potential if the potential is switched on the electrode.

combineElements



all.md 2024-07-10

2 / 17

Performs an operation (addition, subtraction, or multiplication) on two regions.

Usage: [Index] = combineElements(Index, Index2, operations);

Index - First region indices.
Index2 - Second region indices.
operations - Defined as sum, difference, or product of the two regions.
returns - Vector of indices resulting from the operation on two regions.

defineWorkspace
Initiates work on a model. Input arguments describe the size of the area in which the model will be
constructed. Values for width and height should be provided in mm. This function creates global variables:

Elements - A cell array that stores all created simple and complex elements.
Sensor - A cell array that stores elements making up the final sensor model.
nargin - 2 for 2D, 3 for 3D.

Usage: [model] = defineWorkspace(width, height, depth);

model - Structure with a numerical model description.
width - Workspace width.
height - Workspace height.
depth - Workspace depth (optional for 3D).

makeTomograph
Optionally prepares the entire body of a cylindrical sensor quickly.

Usage: [model] = makeTomograph(model, radius, height, wallWidth, insulationWidth,
numElectrodes, ringPositions, ringRadius, electrodeHeight, electrodeWidthDeg,
electrodeThickness, const);

model - Structure with numerical model definition (post-defineWorkspace and defineMesh).
radius - Inner radius of the cylindrical sensor.
height - Height of the cylindrical sensor.
wallWidth - Thickness of the cylinder wall.
insulationWidth - Thickness of inner insulation.
numElectrodes - Number of electrodes.
ringPositions - Z-position of the center of electrode rings.
ringRadius - Radius of electrode rings.
electrodeHeight - Height of the electrodes.
electrodeWidthDeg - Angular width of a single electrode.
electrodeThickness - Thickness of electrodes.
const - A structure containing lists of electrical permittivities and conductivities of the materials used in
the sensor construction.



all.md 2024-07-10

3 / 17

newComplexElement
Creates a new complex element by combining existing elements. The new element is added to the 'Elements'
cell array in the numerical model.

Usage: [model] = newComplexElement(model, name, formula);

model - Structure with model description.
name - Name of the element to be created.
formula - Operation on elements represented as 'el1+el2', 'el1-el2', or 'el1&el2'.

newSimpleElement
Creates a new solid geometry element and adds it to the 'Elements' cell array in the numerical model. This
function checks whether the name has already been used and selects the appropriate function for calculating
the geometry.

Usage: [model] = newSimpleElement(model, shape, name, coord, angle, dimensions,
bounding_angle1, bounding_angle2, ring_width);

Example: [model] = newSimpleElement(model, 'cylinder', 'test_element1', [0, 0, 0], [0,
45, 15], [50, 50, 50], 0, 270, 25);

model - Structure with a numerical model description.
shape - Shape of the element, options include: 'ellipse', 'rectangle', 'ellipsoid', 'cuboid', and 'cylinder'.
name - Name of the new element.
coord - Coordinates of the center of the shape, matching the dimensionality of the model.
angle - Rotation angle of the element.
dimensions - Dimensions of the object along the x, y, and z axes (for 3D objects).
bounding_angle1 - Start angle for an ellipse segment; default is 0.
bounding_angle2 - End angle for an ellipse segment; default is 360.
ring_width - Width of a created ring; default creates a solid interior.

prepareMaps
Prepares three essential maps for discretizing the mesh.

Usage: [model] = prepareMaps(model);

model - Structure with a numerical model description.
List of prepared maps:

model.eps_map - Map of relative permittivity (epsilon).
model.sigma_map - Map of conductivity (sigma).
model.patternImage - Map of elements in the model.

readFormula



all.md 2024-07-10

4 / 17

Extracts names of elements and symbols of operations from an algebraic expression. This function is primarily
used by newComplexElement.

Usage: [components, operations] = readFormula(formula);

formula - Algebraic expression, e.g., from newComplexElement.
components - Names of the elements in the formula.
operations - Operational symbols used in the formula.

specifyFOV
Determines the indices of the area of interest inside the sensor. These indices are subsequently used by
functions to present data and in upscaleModel during nonlinear reconstruction.

Usage: [model] = specifyFOV(model, name);

model - Structure with a numerical model description.
name - Name of the element to be saved as the Field of View (FOV).

__________________________________________________________

Discretization mesh

defineMesh
Distributes points (pixels) across the workspace. It creates two variables—matrices X and Y—that store x and y
coordinates, representing the grid. The inputs are numbers of points spread along the width and height of the
workspace.

nargin = 3 -> 2D
nargin = 4 -> 3D

Usage: [model] = defineMesh(model, varargin);

varargin -> widthPoints, heightPoints, depthPoints

model - structure with a numerical model description
widthPoints - mesh width
heightPoints - mesh height
depthPoints - mesh depth

findIndexFwdp
Finds indices in a quadtree mesh.



all.md 2024-07-10

5 / 17

Usage: [index] = findIndexFwdp(model, element_name);

model - structure with a numerical model description
element_name - the name of the element

findNeighbors
Finds pixels (four neighbors in 2D and six in 3D) near a pixel with a given index.

Usage: [QT] = findNeighbors(QT, index);

QT - quadtree structure with a numerical model description
index - the index of the pixel for which neighbors are searched

fineMesh
Modifies a pattern image used by the meshing algorithm. Generating a pattern in a specific geometrical
element creates a finer mesh in that area. A chessboard pattern is generated in the selected element of the
space.

Usage: model = fineMesh(model, element, elementSize);

model - structure with a numerical model description
element - the name of the element
elementSize - determines the mesh size

meshing
The meshing function creates and manages a quadtree of an image.

Usage: [model] = meshing(model, pixMin, pixMax);

model - structure with a numerical model description
pixMin - minimum pixel size in a mesh
pixMax - maximum pixel size in a mesh

qtComp

The qtComp function recreates a full matrix from a quadtree sparse with new chosen values.

Usage: [fullMat] = qtComp(model, varargin);

fullMat - full matrix (uniform) with values
QT - structure with a numerical model description necessary to create a quadtree
varargin - nonuniform mesh to be represented in a uniform mesh

qtCut



all.md 2024-07-10

6 / 17

Function for a single cut in a quadtree structure. Used as a recursive function by qtDecom.

Usage: [qt] = qtCut(QT, A, S, param, pixMin, pixMax);

qt - quadtree mesh structure
A - full matrix to cut
S - temporary matrix that is part of A
param - measure of non-uniformity
pixMin - minimum pixel size in a mesh
pixMax - maximum pixel size in a mesh

qtDecom
Function to create a quadtree structure. Used in meshing.

Usage: qt = qtDecom(QT, A, param, pixMin, pixMax);

QT - structure with a numerical model description necessary to create a quadtree
A - a map used for forming a uniform mesh
param - measure of non-uniformity
pixMin - minimum pixel size in a mesh
pixMax - maximum pixel size in a mesh
qt - quadtree structure with a numerical model description

recNeighSearch
Recurrent neighbor searching. Used by findNeighbors.

Usage: [nList] = recNeighSearch(QT, index, pixSize, nList, plane);

QT - quadtree structure with a numerical model description
index - the index of the pixel for which the neighbors are searched
pixSize - size of an element
nList - structure with the latest list of neighbors in plane
plane - name of the plane to search: 1 - k, 2 - j, 3 - i

__________________________________________________________

Forward problem functions

addNoise

Adds noise to measurements based on the specified signal-to-noise ratio.



all.md 2024-07-10

7 / 17

Usage: [model] = addNoise(model, SNRdb);

model - structure with a numerical model description.
SNRdb - Signal to Noise Ratio (SNR) of the measurement.

boundaryVoltageVector
Identifies points with boundary conditions, finds points with unknown potential, sets the voltage on
electrodes and screens (Dirichlet), and generates a linear vector (1D) of voltage distribution for a given
electrode number. The matrix B is constructed using the column vectors of boundary voltage.

Important: The voltage can be gradually reduced at the tips of the electrodes to avoid singular points at
sharp edges using a smoothing coefficient.

Usage: [model] = boundaryVoltageVector(model, varargin);

model - structure with a numerical model description.
varargin (if used):

scoeff - optional value in the range (0, 0.5] which controls the smoothness.

calculateComponents
Calculates values of measurement components, used by the calculateMeasurement function.

Usage: [model] = calculateComponents(model);

model - structure with a numerical model description.
Calculated values include:

model.C - Capacitance.
model.G - Conductivity.
model.Y - Admittance.

calculateElectricField
Calculates electric field vectors at the points of a nonuniform mesh stored in the qt structure. Electric field
components [Ex, Ey] are stored in two matrices: qt.Ex and qt.Ey, where the number of rows equals the number
of leaves, and the number of columns equals the number of excitations. Varargin is used only by the
calculatePotential function.

Usage: [model] = calculateElectricField(model, varargin);

model - structure with a numerical model description.
varargin (if used by calculatePotential):

mode - 'mldivide' (default) or 'bicgstab'; 'bicgstab' is iterative and suggested for 3D simulations
with an excessive number of mesh elements.
tol - tolerance value for the 'bicgstab' algorithm, default is 1e-3.



all.md 2024-07-10

8 / 17

calculateMeasurement
Calculates values of measurements.

Usage: [model] = calculateMeasurements(model);

model - structure with a numerical model description.
Calculated values:

model.K - Complex capacitance.
Uses calculateComponents to obtain:

model.C - Capacitance.
model.G - Conductivity.
model.Y - Admittance.

calculatePotential
Calculates electric field potential at the points of a nonuniform mesh stored in the qt structure. If a 3D
simulation in Matlab results in an "out of memory" error, an iterative calculation can be used by setting the
mode to 'bicgstab'.

Usage: [model] = calculatePotential(model, mode, tol);

model - structure with a numerical model description.
mode - 'mldivide' (default) or 'bicgstab'; 'bicgstab' is iterative and is suggested for 3D simulations with
an excessive number of mesh elements.
tol - tolerance value for the 'bicgstab' algorithm, default is 1e-3.

calculateSensitivityMaps
Calculates sensitivity at the points of a nonuniform mesh stored in the qt structure using a scalar product with
the conjugate. Sensitivity is stored in sparse vectors S(elem,pair), where the number of rows equals the
number of leaves and the number of columns equals the number of electrode pairs. The calculated sensitivity
depends on the size of the pixel and requires normalization before interpolation to a uniform mesh.

Usage: [model] = calculateSensitivityMaps(model);

model - structure with a numerical model description.

electrodePairs
Calculates two indices of electrode numbers for electrode pairs (application electrode, sensing electrode). The
position in the vectors corresponds to the order of measurement of mutual capacitance of electrodes.

Usage: [application, receiving] = electrodePairs(elecNum, all);

elecNum - number of electrodes in the sensor.
all - 0 for without, 1 with repeating measurements (1-2 and 2-1).



all.md 2024-07-10

9 / 17

application - vector with application electrode numbers.
receiving - vector with sensing electrode numbers.

findBoundaryCondInd
Finds mesh points where:

Boundary conditions are set (every point in the model that has a known value of electric potential).
Potential is switched (e.g., excitation electrodes).
Potential is unknown and should be calculated.

Usage: [bcInd, elInd, calcInd] = findBoundaryCondInd(model);

model - structure with a numerical model description.
Returns three sets of point indices.

findElement
Finds an element by name within a cell array and returns its index. If no element with the given name exists,
the function returns 0.

Usage: [n] = findElement(name, cellArray);

name - The name of the element.
cellArray - Could be model.elements or model.sensor.
n - The index of the element.

findIndex
Finds indices in a mesh based on the element name.

Usage: index = findIndex(model, element_name);

model - Structure with a numerical model description.
element_name - The name of the element.

getConductivityMap

Creates a vector of conductivity values for the elements in the workspace.

Usage: [sigmaMap] = getConductivityMap(model);

model - Structure with a numerical model description.
sigmaMap - Map of conductivity values normalized by (2\pi f \epsilon_0).

getElementMap



all.md 2024-07-10

10 / 17

Generates a pixel map of elements in the model, where pixel values correspond to the unique number of each
element.

Usage: [epsilon_map, sigma_map] = getElementMap(model);

model - Structure with a numerical model description.
epsilon_map - 2D matrix containing epsilon values for the model.
sigma_map - 2D matrix containing sigma values for the model.

getPermittivityMap
Creates a vector of permittivity values for the elements in the workspace.

Usage: [epsMap] = getPermittivityMap(model);

model - Structure with a numerical model description.
epsMap - Map of relative permittivity values.

sensorElectrodePairs
Sets the number of electrode pairs and assigns excitation voltages to both excitation and receiving electrodes.

Usage: [model] = sensorElectrodePairs(model);

model - Structure with a model description. This function requires some sensor fields to be set before
running: sensor.measurements_all.

setElectrodes
Identifies and enumerates electrodes based on their excitation potential within the model.

Usage: [model] = setElectrodes(model);

model - Structure with a numerical model description.

__________________________________________________________

Inverse problem functions

clearFields
Function to remove specified fields from structures to reduce their memory usage.

Usage: model = clearFields(model, nestedFieldsToRemove);



all.md 2024-07-10

11 / 17

model - A cell array containing model names as strings (e.g., {'model1', 'model2'}).
nestedFieldsToRemove - A cell array containing nested field names to be removed (e.g., {'qt.vt',
'dd'}).

defineMeshInvp
Distributes points (pixels) over the workspace and creates two matrices, X and Y, which store the x and y
coordinates representing the grid. The input values are the number of points spread along the width and
height of the workspace.

Usage: [model] = defineMeshInvp(model, widthPoints, heightPoints, depthPoints);

model - Structure with a numerical model description.
widthPoints - Mesh width.
heightPoints - Mesh height.
depthPoints - Mesh depth (optional, for 3D).

downscaleModel
Interpolates a model to a coarser mesh used in the inverse problem. This process involves decimation and
sensitivity adjustment for the complex permittivity distribution within the model.

Usage: [model] = downscaleModel(mesh, model);

mesh - Inverse problem mesh.
model - Structure with a numerical model description.

findIndexInvp
Finds indices in a coarse mesh for the inverse problem.

Usage: [Index] = findIndexInvp(modelInvp, element_name);

modelInvp - Structure with a numerical model description.
element_name - Name of the element.

Landweber

Performs the Landweber iterative algorithm.

Usage: [invp] = Landweber(invp, maxiter, alpha);

invp - Structure with an inverse model description.
maxiter - Maximum number of iterations.
alpha - Relaxation factor.



all.md 2024-07-10

12 / 17

LBP
Performs the Linear Back-Projection algorithm.

Usage: [invp] = LBP(invp);

invp - Structure with an inverse model description.

PINV
Performs the Moore–Penrose pseudoinverse operation.

Usage: [invp] = PINV(invp);

invp - Structure with an inverse model description.
tol - Damping parameter value (optional).

semiLM
Performs the semilinear Levenberg-Marquardt algorithm.

Usage: [invp] = semiLM(invp, maxiter, alpha, lambda, maxUpdate);

invp - Structure with an inverse model description.
maxiter - Maximum number of iterations.
alpha - Relaxation factor.
lambda - Damping parameter value.
maxUpdate - Maximum number of sensitivity matrix updates.

upscaleModel
Interpolates the permittivity map to a finer qt mesh. This function requires the expansion of FOV data
(extrapolating at FOV's edges).

Usage: [model] = upscaleModel(eps_map, model);

eps_map - Permivitity map from an inverse problem mesh.
model - Structure with a numerical model description.

withoutRepetition
Converts sensitivity matrices from 'all measurements' to 'without repetitions', reducing the number of rows in
the sensitivity matrix by half.

Usage: [model] = WithoutRepetition(model, modelList);

model - Vector with application electrode numbers.



all.md 2024-07-10

13 / 17

modelList - List of matrices to convert; example matrices include {min, max, pha}.

__________________________________________________________

Visualization

drawElectricField
Draws a selected component or modulus of the electric field.

Usage: [] = drawElectricField(model, mode, part, comp, electrode, method);

model - Numerical model structure.
mode - Display mode ('px' for pixels, 'mm' for millimeters).
part - Part of the field to display ('real', 'imag').
comp - Component of the field to display ('Ex', 'Ey', 'Em' for modulus).
electrode - 0 to map potential for every electrode, or a specific electrode number to map only that
electrode.
method (optional) - Method of presentation for 3D ('mpr' or 'slice').

drawInterpreter
Interprets parameters selected by the user, used by drawMap and drawInvpMap.

Usage: [sets] = drawInterpreter(varargin);

Varargin values can be in any order:

sets.mode - 'mm' or 'px'.
sets.part - 'real' or 'imag', applicable to potential, electric field, and sensitivity matrix.
sets.electrode - Number of electrode or pair of electrodes.
sets.method - 'mpr', 'surf', or 'slice' (only for 3D).
sets.ix - Indices of mesh elements to present; 0 indicates the whole matrix will be presented.

drawInvpMap
Draws maps of selected parameters for the inverse problem.

Usage: [] = drawInvpMap(model, parameter, varargin);

model - Structure with numerical model description.
parameter - Parameter to be presented:

'permittivity' - Permittivity distribution.
'conductivity' - Conductivity distribution.



all.md 2024-07-10

14 / 17

Varargin values are interpreted by drawInterpreter and can be provided in any order.

drawMap
Draws maps based on selected parameters.

Usage: [] = drawMap(model, parameter, varargin);

model - Structure with numerical model description.
parameter - Parameter to be presented:

'V' - Electric potential distribution.
'Em', 'Ex', 'Ey', 'Ez' - Electric field distribution components.
'S' - Sensitivity matrix.
'pattern' - List of elements in the model.
'permittivity', 'epsilon' - Permittivity distribution.
'conductivity', 'sigma' - Conductivity distribution.

Varargin values are interpreted by drawInterpreter and can be provided in any order.

drawPatternImage
Draws a pattern image representing the distribution of objects in the model.

Usage: [] = drawPatternImage(model, mode, method);

model - Numerical model structure.
mode - 'px' for pixels, 'mm' for millimeters.
method (optional) - Presentation method for 3D ('surf', 'mpr', or 'slice').

drawPotential
Draws potential maps for selected excitations.

Usage: [] = drawPotential(model, mode, part, electrode, method);

model - Numerical model structure.
mode - 'px' for pixels, 'mm' for millimeters.
part - 'real' or 'imag'.
electrode - 0 for potential maps of every electrode, >0 for only the selected electrode.
method (optional) - Presentation method for 3D ('mpr' or 'slice').

drawSensitivityMap

Draws sensitivity maps for specified electrodes.

Usage: [] = drawSensitivityMap(model, mode, part, draw, method);



all.md 2024-07-10

15 / 17

model - Numerical model structure.
mode - 'px' for pixels, 'mm' for millimeters.
part - 'real' or 'imag'.
draw - Application electrode number or a pair of electrodes [e1, e2], e.g., [2, 13].
method (optional) - Presentation method for 3D ('mpr' or 'slice').

MPR
Multiplanar reconstruction (MPR) is a method for 3D data presentation that displays three cross-sections (xy,
xz, yz) in separate images. Users can change the displayed image by clicking in the desired location with the
left mouse button, where crosshairs indicate the current position. Dragging the right mouse button adjusts
the 'w' and 'c' parameters of windowing. This method can be used by drawMap and drawInvpMap for 3D data.

Usage: [] = mpr(data, varargin);

data - 3D matrix with values to be presented.
If varargin:

mesh - Structure with X, Y, and optionally Z meshgrid lists of pixel coordinates.

oneSliceView
This function presents a single slice from a dataset, primarily used for 2D data presentation. Dragging the
right mouse button adjusts the 'w' and 'c' parameters of windowing. This method is used by drawMap and
drawInvpMap for 2D data.

Usage: [] = oneSliceView(data, varargin);

data - 2D matrix with values to be presented.
If varargin:

mesh - Structure with X and Y meshgrid lists of pixel coordinates.

plotMeasurement
Plots mutual measurements of electrodes, with a maximum of 8 plots at a time.

Usage: [] = plotMeasurements(mode, part, index, modelList, nameList);

mode - Display mode ('linear', 'log').
part - Type of measurement ('C' for capacitance, 'G' for conductance).
index - Range of displayed pairs of electrodes (e.g., [1:31]).
modelList - List of models (e.g., {modelMin, modelMax}).
nameList (optional) - Names for capacitance vectors used in legends (e.g., {'min', 'max'}); defaults
to model1, model2, etc., if not provided.

plotNorm



all.md 2024-07-10

16 / 17

Plots norms calculated during the reconstruction process.

Usage: [] = plotNorm(parameter, model, name, part);

parameter - Norm to plot ('residue' or 'error').
model - Structure with a numerical model description of the inverse problem.
name - List of model names (e.g., {'LBP', 'PINV'}).
part (optional) - Specifies whether to plot the real or imaginary part of the norm.

shadedSurfaceDisplay
Presents 3D data using Phong shading, primarily used for displaying permittivity and conductivity
distributions by drawInvpMap and drawMap.

Usage: [] = shadedSurfaceDisplay(patternImage, varargin);

patternImage - 3D matrix with parameter values to be presented.
If varargin:

mesh - Structure with X, Y, and Z meshgrid lists of pixel coordinates.

shadedSurfaceDisplayPattern
A specific version of shadedSurfaceDisplay used for presenting lists of model elements, typically used by
drawPatternImage with the 'surf' method.

Usage: [] = shadedSurfaceDisplayPattern(patternImage, varargin);

patternImage - 3D matrix with numbers indicating the numbering of elements in the model.
If varargin:

mesh - Structure with X, Y, and Z meshgrid lists of pixel coordinates.

sliceView
Presents a single image slice from 3D data (a slice across the Z-axis). Users can view different cross-sections
by clicking and dragging the left mouse button from left to right or bottom to top. Dragging the right mouse
button adjusts the 'w' and 'c' parameters of windowing. This method is used by drawMap and drawInvpMap
for 3D data.

Usage: [] = sliceView(data, varargin);

data - 3D matrix with values to be presented.
If varargin:

mesh - Structure with X, Y, and Z meshgrid lists of pixel coordinates.

__________________________________________________________



all.md 2024-07-10

17 / 17

Contact information

This is documentation of the ECTsim toolbox.

Questions? Contact us at damian.wanta@pw.edu.pl or waldemar.smolik@pw.edu.pl

Visit our homepage: https://ectsim.ire.pw.edu.pl/

Data Acquisition and Processing Lab

Institute of Radioelectronics and Multimedia Technology

Warsaw University of Technology

Nowowiejska 15/19

00-665 Warsaw

Poland


